PHASE II ENVIRONMENTAL
ASSESSMENT OF THE
DOUGLAS AIRCRAFT COMPANY
C-6 FACILITY, PARKING LOT AND
TOOL STORAGE YARD
LOS ANGELES, CA

Prepared for:

MCDONNELL DOUGLAS
REALTY COMPANY

Prepared by:

CAMP DRESSER & McKEE INC.

Irvine, California

August 21, 1991

1812-6- 24

CAMP DRESSER & McKEE INC.

18881 Von Karman, Suite 650 irvine, California 92715 714 752-5452

August 21, 1991

Mr. Gary Powley MCDONNELL DOUGLAS REALTY CO. 18881 Von Karman, Suite 1200 Irvine, California 92715

Subject:

Submittal of Phase II Environmental Assessment Report of the Douglas

Aircraft Company C-6 Facility, Parking Lot and Tool Storage Yard

Dear Mr. Powley:

Camp Dresser & McKee Inc. (CDM) is pleased to submit the enclosed Phase II Environmental Assessment Report for the subject property. Six copies have been provided for your use.

The report presents the findings and conclusions of the Phase II subsurface soil investigation detailed in the project scope of work.

Please call either me or Katherin Dickinson if you have any questions. It has been a pleasure to serve McDonnell Douglas Realty.

Very truly yours,

CAMP DRESSER & MCKEE INC.

Suzanne M. Rowe, R.G.

Project Manager

Katherine Dickinson

Project Hydrogeologist

Enclosures

2299-115-RT-AUDT

TABLE OF CONTENTS

Section		Page
1.0	INTRODUCTION	1
2.0	PHASE II FIELD INVESTIGATION PROCEDURES	1
	2.1 Soil Boring Locations2.2 Drilling and Soil Sampling2.3 Sample Analysis2.4 Equipment Decontamination	2 2 4 4
3.0	RESULTS OF PHASE II INVESTIGATION	5
	3.1 Soil Sample Analysis3.2 Subsurface Soil Conditions	5 11
4.0	CONCLUSIONS AND RECOMMENDATIONS	11
5.0	PEEERENCES	12

LIST OF FIGURES

Figure No.	<u>Title</u>	Follows Page
1	Project Site Location Map	2
2	Soil Boring Location Map	2
	LIST OF TABLES	
<u>Table</u>	-	<u>Page</u>
Table 1	Organic Analytical Results	6
Table 2	Metals, Pesticides and PCBs Analytical Results	7
Table 3	California Standards for Inorganic Compounds	9
Table 4	Normal Metal Concentrations in Western U.S. Soil	s 10
	LIST OF APPENDICES	
Appendix 1	Soil Boring Logs	
Appendix 2	Laboratory Data Sheets	

1.0 INTRODUCTION

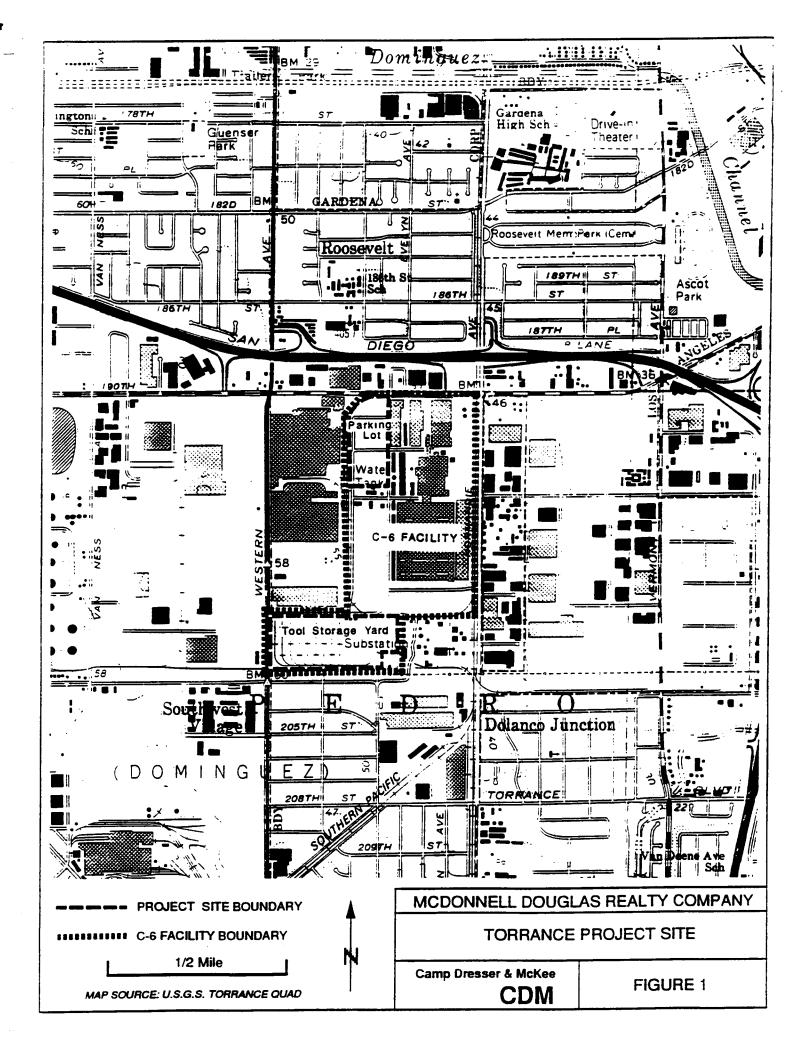
Camp Dresser & McKee Inc. (CDM) was contracted by McDonnell Douglas Realty
Company (MDR) on April 5, 1991 to conduct a Phase I investigation at the Douglas Aircraft
Company C-6 Facility parking lot and tool storage yard (the project site). A Phase I
Environmental Assessment of the subject property was completed by CDM and a report was
submitted to MDR on June 13, 1991. Based on the results of the Phase I assessment, and
due to the fact that the presence of contaminated ground water from off-site sources is not of
primary concern, past or present activities at the project site do not warrant an extensive
Phase II investigation. However, a preliminary subsurface soil investigation was requested
by MDR to provide an additional level of confidence regarding subsurface soil conditions at
the subject property. On July 13, 1991, MDR provided authorization to amend the Phase I
contract to commence with the Phase II subsurface soil investigation.

The purpose of this report is to summarize the findings and conclusions of the Phase II field investigation. The Phase II investigation consisted of six soil borings to provide data on the potential for subsurface soil contamination resulting from activities on- or off-site. Three soil borings were located in the parking lot, where ground water contamination from trichloroethylene (TCE) has been detected in two monitor wells along the western and northwestern boundary of the lot. The remaining three borings were located in the tool storage area including areas bordering the Montrose Chemicals site and the Department of Water and Power (DWP) power substation.

2.0 PHASE II FIELD INVESTIGATION PROCEDURES

The Phase II investigation consisted of drilling and sampling six 30-foot subsurface soil borings to determine the presence or absence of contamination at each location. The following sections describe the drilling and sampling procedures along with a discussion on decontamination and quality control measures.

2.1 Soil Boring Locations


The Douglas Aircraft Company C-6 facility location is shown on Figure 1. Soil boring locations are shown on Figure 2. The locations were selected to accomplish the objectives of the Phase II investigation. Borings B-1 and B-3 were located along the perimeter of the parking lot adjacent to wells WCC-10S and DAC-P1, respectively, both of which have shown elevated levels of TCE in the ground water believed to be attributable to off-site activities. Boring B-2 was located in the center of this parking lot. Borings B-4 and B-5 were located in the tool storage yard near the DWP power substation, with B-4 along the perimeter of the Montrose Chemical property. Boring B-6 was located in the approximate center of the tool storage yard.

Underground Service Alert was notified by CDM prior to drilling at the proposed locations. In addition, MDR supplied plans of all underground utilities on each parcel and confirmed all soil boring locations prior to drilling. No underground obstructions were encountered during drilling.

2.2 Drilling and Soil Sampling

Beylik Drilling Inc. of La Habra was contracted by CDM to perform borehole drilling. The field work commenced on July 18, 1991 and was completed on July 19, 1991.

Soil borings were drilled using a hollow stem auger rig with eight-inch outer diameter auger flights. Soil samples were obtained every five feet using a one and one-half-inch diameter split-spoon sampler (California Ring Sampler) fitted with six 2-1/2-inch long interior stainless steel sampling sleeves. The number of blows required to drive the sampler per six-inch increment was recorded in the field log book and is included on boring logs in Appendix 1. The blow count gives an indication of the relative density of the material being sampled. The total depth of each borehole was 31.5 feet below the ground surface (bgs).

Immediately upon opening the sampler, the soil was checked with a photoionization detector (PID) for the presence of organic vapors. Organic vapors were not detected in any of the soil samples subjected to field screening with the PID (all measurements were zero parts per million or equal to background measurements). In addition, there were no visible or olfactory indications of contamination (i.e., staining or hydrocarbon odor). The two lowermost sleeves from each five-foot sample interval were prepared by covering each end with teflon tape and securing plastic caps over the ends. The lowermost sleeve was labeled with each five-foot increment and was composited into one sample for the entire boring. The next lowermost sleeve was labeled with the five-foot increment plus 0.2 feet and was saved by the lab for later analysis in the event that contamination was identified. The two sleeves from each five-foot interval were then labeled with waterproof ink, placed inside a ziplock bag and placed into sealable ice chests and cooled with blue ice immediately after sampling.

Sample containers were labeled according to the following coding:

McDonnell Douglas Realty - Torrance Site	Soil Boring No.	Sample Depth
MDT	B-1	5

Sample container labels also included date and time of sampling. The samples were delivered by CDM personnel to CKY Laboratories of Torrance at the end of each day of sampling. Chain of custody forms accompanied the samples at all times.

The soil material was logged using the Unified Soil Classification System (USCS) and recorded into a field log book. Borehole logs for each of the soil borings are included in Appendix 1. All soil cuttings were collected in 55-gallon drums which are currently stored on site and will be disposed of by MDR.

3

2.3 Sample Analysis

The analytical protocols established for the soil samples collected during this investigation were based on available information concerning past and present activities at the project site and surrounding properties. Due to the known presence of ground water contamination of TCE, chloroform, and a variety of other volatile organic compounds, all composited soil samples were analyzed according to EPA Methods 8010/8020 for the presence of halogenated and aromatic volatile organic compounds. In addition, composited samples from each boring were analyzed for 13 Priority Pollutant Metals according to EPA Methods due to the fact that metal processing plants are adjacent to both parcels. Two soil samples collected adjacent to the Montrose Chemicals site and the DWP power substation were also be analyzed for organochlorine pesticides and PCBs according to EPA Method 8080 due to the documented DDT contamination at the Montrose site and potential for PCB contamination adjacent to the DWP substation. All soil samples were screened in the field with a photoionization detector for the presence of volatile organic compounds.

2.4 Equipment Decontamination

All downhole drilling and sample driving equipment was steam-cleaned prior to first use and between each boring. Non-disposable sampling equipment such as split-spoon samplers, stainless steel sleeves, plastic end caps, bailers and spatulas, were decontaminated according to the following procedures:

- 1. Wash with laboratory grade detergent (Alconox)
- 2. Rinse with tap water
- 3. Rinse twice with deionized/distilled water
- 4. Rinse with reagent grade methanol
- 5. Rinse with deionized water

4

All decontaminated sampling equipment was stored on clean polyethylene sheeting or in new plastic trash bags. Decontaminated equipment was not allowed to touch the ground. These decontamination procedures were utilized to help prevent cross-contamination and ensure the integrity of each sample.

3.0 RESULTS OF PHASE II INVESTIGATION

3.1 Soil Sample Analysis

Each composite sample obtained from the facility was analyzed for volatile organic compounds by EPA Methods 8010/8020 and for priority pollutant metals by EPA Methods 3050/6010/7000. Samples B-4 and B-5 were also analyzed by EPA Method 8080, for PCBs and organochlorine pesticides. Volatile organic results for all borings are summarized in Table 1, whereas metals, pesticides and PCB results are summarized in Table 2. The laboratory data sheets and chain of custody forms as provided by CKY Laboratory of Torrance, are included in Appendix 2.

No purgeable aromatic compounds, EPA Method 8020, were detected above the detection limit of 5.0 μ g/kg in any of the composite samples. Chlorobenzene was the only purgeable halocarbon, EPA Method 8010, detected in any of the samples. It was detected at 8.40 μ g/kg in sample B-3, just above the detection limit of 5.0 μ g/kg. Available information on ground water contamination in the vicinity of B-3 has not indicated that chlorobenzene is a contaminant found in the ground water.

No pesticides or PCBs by EPA Method 8080 were detected in any of the composite soil samples at detection limits ranging from 0.01 mg/kg to 0.10 mg/kg. The metals antimony, beryllium, lead, mercury, selenium, silver and thallium were not detected in any of the soil samples. Cadmium, chromium, copper, nickel and zinc were all detected in composite samples, and arsenic was detected in all composite samples except for B-5. Detection limits for metals ranged from 0.05 mg/kg to 10.00 mg/kg.

TABLE 1 **McDONNEL DOULGLAS REALTY DOUGLAS AIRCRAFT COMPANY** C-6 FACILITY, PARKING LOT AND TOOL STORAGE AREA 8010/8020 ORGANIC ANALYTICAL RESULTS **SOIL SAMPLES**

C	_	54 1	Ē-2	ñ a		<u>.</u>	
Compound		B1	B-2	B-3	B-4	B-5	B-6
8010 Parameters		5.00	5.50	F 001			
Benzylchloride	_<	5.00			5.00<	5.00<	
Bromodichloromethane	_\<	5.00			5.00 <	5.00<	
Bromoform	_<	5.00				5.00<	
Bromomethane	<	20.00			20.00 <	20.00 <	
Carbon Tetrachloride	<	5.00			5.00<	5.00<	5.00
Chlorobenzene	<	5.00		8.40 <	5.00<	5.00<	
Chloroethane	<	20.00			20.00 <	20.00	
2-Chloroethylvinylether	<	5.00<			5.00<	5.00<	5.00
Chloroform	<u> </u>	5.00 <			5.00<	5.00<	5.00
Chloromethane	<	20.00			20.00<	20.00 <	
Chlorotoluene	_<	5.00 <			5.00<	5.00<	5.00
Dibromochloromethane	<	5.00 <			5.00<	5.00<	5.00
1,2-Dichlorobenzene	<	5.00			5.00<	5.00<	5.00
1,3-Dichlorobenzene	<	5.00 <	5.00<		5.00<	5.00<	5.00
1,4-Dichiorobenzene	<	5.00<			5.00<	5.00<	5.00
Dichlorodifluoromethane	<	20.00			20.00<	20.00 <	20.00
1,1-Dichioroethane	<	5.00<			5.00<	5.00<	5.00
1,2-Dichloroethane	_<	5.00<			5.00<	5.00<	5.00
1,1-Dichloroethene	<	5.00<			5.00<	5.00<	5.00
trans-1,2-Dichloroethene	<	5.00<			5.00<	5.00 <	5.00
1,2-Dichloropropane	<	5.00<		5.00<	5.00 <	5.00<	5.00
cis-1,3-Dichloropropene	<	5.00<	5.00<	5.00<	5.00 <	5.00 <	5.00
trans-1,3-Dichloropropene	<	5.00<		5.00<	5.00 <	5.00<	5.00
Ethylene Dibromide	<	5.00 <		5.00<	5.00<	5.00<	5.00
Methylene Chloride	<	5.00<		5.00	5.00<	5.00i<	5.00
1,1,2,2-Tetrachloroethane	<	5.00<		5.00<	5.00<	5.00<	5.00
Tetrachloroethene	<	5.00<		5.00<	5.00<	5.00<	5.00
1,1,1-Trichloroethane	V	5.00<	5.00<	5.00 <	5.00<	5.00<	5.00
1,1,2-Trichloroethane	<	5.00<	5.00 <	5.00 <	5.00<	5.00 <	5.00
Trichloroethene	<	5.00<	5.00<	5.00<	5.00<	5.00 <	5.00
Trichlorofluoromethane	<	5.00<	5.00<	5.00<	5.00<	5.00<	5.00
Vinyl Chloride	<	20.00<	20.00<	20.00<	20.00<	20.00 <	20.00
8020 Parmeters							
Benzene	<	5.00<		5.00<	5.00<	5.00<	5.00
Ethylbenzene	<	5.00 <	5.00<	5.00<	5.00<	5.00∤<	5.00
Toluene	<	5.00<	5.00<	5.00<	5.00<	5.00<	5.00
Xylenes, Total	<	5.00<		5.00<	5.00<	5.00<	5.00
	-						

Note: All results in micrograms per kilogram (ug/kg) Laboratory analyses performed by CKY.

< Denotes non-detection at indicated detection limit

TABLE 2 McDONNEL DOULGLAS REALTY DOUGLAS AIRCRAFT COMPANY C-6 FACILITY, PARKING LOT AND TOOL STORAGE AREA METALS, PESTICIDES & PCBS ANALYTICAL RESULTS SOIL SAMPLES

Compound	B-1	B-2	B-3	B-4	B-5	B-6
3050/6010/7000 Metals						
Antimony	< 5.00		5.00	< 5.00		
Arsenic	12.00		13.00			7.80
Beryllium	< 0.50		0.50		< 0.50<	0.50
Cadmium	2.90		2.40		1.60	1.90
Chromium, Total	23.00	18.00	19.00	20.00	13.00	14.00
Copper	23.00	18.00	19.00	24.00	11.00	11.00
Lead	< 1.00	< 1.00 <	1.00	< 1.00	< 1.00<	1.00
Mercury	< 0.05	< 0.05<	0.05	< 0.05	< 0.05<	0.05
Nickel	11.00		10.00		9.40	8.50
Selenium	< 5.00		5.00			
Silver	< 0.50	< 0.50 <	0.50	< 0.50	< 0.50<	0.50
Thallium	< 10.00					
Zinc	68.00		62.00	65.00	40.00	44.00
8080 Pesticides						
Aldrin	NA	NA	NA .	< 0.02	< 0.02	NA
Alpha-BHC	NA	NA	NA .	< 0.01	< 0.01	NA
Beta-BHC	NA	NA		< 0.02	< 0.02	NA
Delta-BHC	NA	NA		< 0.02 - < 0.01 -	< 0.02	NA
Gamma-BHC (Lindane)	NA	NA	NA .	< 0.01 < 0.05	< 0.01	NA
Chiodane	NA	NA	NÁ.	< 0.05	< 0.05	NA
4,4'-DDD	NA	NA	NA	< 0.02	< 0.02	NA
4,4'-DDE	NA	NA	NA -	< 0.02	< 0.02	NA
4,4'-DDT	NA	NA		< 0.02	< 0.02	NA
Dieldrin	NA	NA		< 0.02	< 0.02	NA
Endosulfan i	NA	NA		< 0.02		NA
Endosulfan II	NA	NA	NA .	< 0.05	0.05	NA NA
Endosulfan Sulfate	NA NA	NA NA		< 0.05 - < 0.02 -	< 0.05 < 0.02	NA NA
Endrin Endrin Aldehyde	NA NA	NA NA		< 0.02 < 0.05 <		NA NA
Heptachior	NA NA	NA NA		< 0.03		NA
Heptachior Epoxide	NA NA	NA NA		< 0.02	< 0.02	NA
Methxychlor	NA NA	NA NA		< 0.02		NA
Toxaphene	NA NA	NA NA		< 0.10		NA
8080 PCBs	, , , , , ,	1 1111		- 00	- 551	
Arocior-1016	NA	NA	NA -	< 0.10	< 0.10	NA
Arocior-1221	NA	NA NA		< 0.10		NA
Aroclor-1232	NA	NA	- 3 77 7	< 0.10		NA
Aroclor-1242	NA	NA .		< 0.10		NA
Arocior-1248	NA NA	NA		< 0.10		NA
Arocior-1254	NA NA	NA	:	< 0.10		NA
Arocior-1260	NA NA	NA NA		< 0.10		NA
A100101-1200	110	117	14/1	<u>, 0.10</u>	<u> </u>	-177

Note: All metal, pesticide and PCB results in milligrams per kilogram (mg/kg) < Denotes non-detection at indicated detection limit

NA Denotes parameter not analyzed

⁼ Denotes compound concentration is equal to the detection limits

The inorganic analysis results were evaluated relative to standards set by the California Administrative Code, Title 22 (Modified August, 1986). These standards are shown on Table 3. Wastes with concentrations exceeding the Total Threshold Limit Concentration (TTLC) may be considered to be hazardous by the California Department of Health. Materials with total concentrations greater than ten times the soluble threshold limit concentration (STLC) values are considered hazardous and are required to be reanalyzed by wet extraction. Table 4 shows normal ranges of metals in western United States soils. Arsenic concentrations ranged from non-detect in B-5 to 15 mg/kg in B-4. Typical background levels of arsenic soils of the western U.S. range from 2.8 - 10.9 mg/kg. Although soil samples from B-1, B-2, B-3 and B-4 were slightly above the upper limit of this range, the levels of arsenic are not necessarily indicative of contamination at the site. The STLC for arsenic is 5 mg/kg, therefore, 10 times this value or 50 mg/kg is well above the arsenic levels detected at the site. The arsenic levels at the site, therefore, would not be considered hazardous from a regulatory standpoint.

Cadmium was detected in all six borings at concentration ranging from 1.6 mg/kg in B-5 to 2.9 mg/kg in B-1. These levels are above the STLC of 1 mg/kg but less than ten times the STLC (10 mg/kg). These levels are also above the typical range of 0.1 mg/kg to 0.5 mg/kg for western soils. Although the native sediments in this area are not known to contain high levels of cadmium, it is possible these soils were imported fill. Cadmium is a metal used in several industrial activities, including pigment in paint.

Chromium was detected at levels from 13 to 23 mg/kg. These values are well below the STLC of 560 mg/kg, and fall within or below the normal range of western U.S. soils of 19-90 mg/kg. Copper was detected at levels from 11 to 24 mg/kg. These values fall within the normal range of copper in western U.S. soils of 10 to 43 mg/kg. All of the copper results are below the STLC of 25 mg/kg.

Nickel was detected in borings at values from 8.5 to 13 mg/kg. These are below the STLC for nickel (20 mg/kg) and within normal values for soils in western U.S. (7-32 mg/kg). Zinc

8

Table 3 California Standards for Inorganic Compounds¹

Substance	Soluble Threshold Limit Concentration ² (mg\kg)	Total Threshold Limit Concentration (mg\kg)
Antimony	15	500
Arsenic	5	500
Barium	100	10,000
Beryllium	0.75	75
Cadmium	1	100
Chromium (III)	5 6 0	2500
Cobalt	80	8,000
Copper	25	2.500
Lead	5	1,000
Mercury	0.2	20
Molybdenum	350	3,500
Nickel	20	2,000
Selenium	1	100
Silver	5	500
Vanadium	24	2,400
Zinc	250	5,000

California Administative Code, Title 22, Modified August, 1986

² Analysis by wet exaction required if total concentration is less than ten times the Soluble Threshold Limit Concentation

TABLE 4

NORMAL RANGES OF ELEMENTAL CONCENTRATIONS
IN SOILS OF THE WESTERN UNITED STATES*

Element	Mean**	Normal Range Mean ± 1 s.d.**
	(mg/kg)	(mg/kg)
Aluminum Antimony Arsenic Barium Beryllium Cadmium Chromium Cobalt Copper Iron Lead Manganese Mercury Nickel Selenium Silver Thallium Tin Vanadium Zinc	38,000 0.47 5.5 580 0.68 0.2 41 7.1 21 21,000 17 380 0.05 15 0.23 0.2 0.2 0.9 70 55	29,000 - 11,600 0.22 - 1.01 2.8 - 10.9 337 - 998 0.30 - 1.56 0.1 - 0.5 19 - 90 3.6 - 14.0 10 - 43 10,800 - 41,000 9 - 31 192-752 0.02 - 0.11 7 - 32 0.09 - 0.56 0.1 - 0.5 0.1 - 0.4 0.4 - 1.9 36 - 136 31 - 98
Molybdenum Thorium Uranium Yttrium	0.85 9.1 2.5 22	0.39 - 1.85 6.1 - 13.6 1.7 - 3.6 13 - 37

^{*} Data From: Shacklette, H.T., and Boerngen, J.G.; 1984: Element Concentrations in Soils and other Surficial Materials of the Conterminous United States. U.S. Surv. Professional Paper 127, 105 pp.

^{**} Means and standard deviations are geometric to account for log-normal distributions.

concentrations in soil samples ranged from 40 to 68 mg/kg, well below the STLC of 250 mg/kg. Zinc values for western U.S. soils range from 31-98 mg/kg.

3.2 Subsurface Soil Conditions

Soils encountered during drilling included silty sands and clayey, silty sands. Minor gravel and shell fragments were present in some borings. Soil lithologies are identified on each of the soil borings included in Appendix 1.

Ground water was not encountered in any of the borings, nor were any perched ground water zones. According to the Phase I report (CDM), shallow ground water is approximately 70-72 feet below ground surface, with ground water flow direction from the northwest to the southeast.

4.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this limited Phase II investigation, we do not believe that further soil investigations are warranted at the site. Although no federal, state, or local clean-up standard exists for chlorobenzene, the concentration of 8.4 μ g/kg in boring B-3 is not likely to be cause for concern by applicable regulatory authorities. Similarly, all of the concentrations of inorganic constituents (notably arsenic, cadmium, chromium, nickel, and zinc) are not of a magnitude which would require further investigation or remediation.

The conclusions stated above are, necessarily, based on data from six borings drilled across an approximate 46-acre site. As such, we cannot conclusively state that subsurface soil contamination does not exist at the site. However, given that the locations of the soil borings were selected based on where existing information indicated higher potential for contamination to occur, the results of this investigation do demonstrate that the probability of extensive subsurface soil contamination existing on the site is low.

5.0 REFERENCES

Camp Dresser & McKee Inc., Phase I Environmental Assessment of the Douglas Aircraft C-6 Facility, Parking Lot and Tool Storage Yard, Los Angeles, California, June 13, 1991.

Douglas Aircraft Company, various maps and plans of the project site.

12

APPENDIX 1
SOIL BORING LOGS

KEY FOR BOREHOLE LOGS

Abbreviations Used:

brn - brown

v - very

blk - black

w/ - with

olv - olive

mod - moderate

yei - yellow

f - fine

lt - light

c - coarse

dk - dark

g - grained

med - medium

tr - trace

B - backround

S - sample

NE - none encountered

NA - not applicable

PID - photo ionization detector

FID - flame ionization detector

ppm - parts per million

Symbols Used:

DEPTH OF SOIL SAMPLED

BENTONITE GROUT

CEMENT

DEPTH OF SAMPLE SENT TO LAB

Lithological Patterns Used:

SAND

CLAYEY SANDY SILT

SILTY OR CLAYEY SAND

CLAYEY SILT

SANDY SILT

SILTY CLAY

SILT

CLAY

GRAVELLY SAND

SILTY OR CLAYEY, GRAVELLY SAND

CLIENT MDC F	REALTY COMPANY	BOREHOLE NO.	B-1	CAMP DRESSE	ER & MCKEE INC.
SITE C-6 FAC	ILTY, TORRANCE	TOTAL DEPTH	31.5 feet	ELEVATION	N. A.
JOB NUMBER	2299-115-RT-AUDT	DATE DRILLED	18 JULY 91	LOGGED BY	EMILY WEYAND
DRILLING CONT	R. BEYLIK DRILLING	DRILLING METHO	D HOLL	OW-STEM AUGER	

	LING CONTR.									
_	_ GF					SAM	PLES		BLOW	25001
DEPTH (feet)	SECODIFICAL S		Lithology	Porebole	<u> </u>			(bbw)	COUNT	RECOV. / ADV.
	DESCRIPTION	nscs	亨	Borehole Abandoned	Water Level	Lab	를	and R/hr	(per 6*	(feet)
			트		>	ļ	<u> </u>		interval)	
_			l				1			
					1					
								,		
5			[Ì				
	5-6.5' SILTY SAND - dusky yel brn, 10YR 2/2.1 to	SM					∇	0/0	10-10-13	
	m g sand, sl damp, no odor, minor fine pebbles.	0.00	3.5				\vdash	5,75		
-	`minor clay.	ł								
-						<u> </u>	l i			
1,0						£				
10	10-11.5' SILTY SAND - mod yel brn, 10YR 5/4, f to	SM	5.5.2			BORING	K			
-	m g sand, no odor, no pebbles, minor clay.	SM					\triangle	0/0	9-13-20	
-						E				
-				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	H.	ENTIRE				
		İ			GROUND WATER ENCOUNTERED	R				
15		ļ			Ž	FOR				j
]]	15-16.5' SILTY SAND - as at 10'.	SM			걸	Щ	X	0/0	9-14-22	
		1	27.27.4			SAMPLE				1
		ĺ		% 5 %3	#	Y.				
				GROUT	ATI		i			1
20				次無次分		COMPOSITE	ŀ			ľ
	20-21.5' SILTY SAND - as at 10'.	SM			9	Ö	∇	0/0	8-8-13	ł
				5555551	ᇫ	₹				
1		1			Ä	ၓ				į
					00	ONE				
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	오	ō				
25		SM	. <u></u>							
-	25-26.5' CLAYEY, SILTY SAND - mod yel brn 10 YR	to					X	0/0	11-12-15	
	5/4, rg sand, moist, no odor.	sc						Ī		j
				$\langle x \rangle \langle x \rangle$						
								.		
30										İ
	30-31.5' SILTY SAND - dk yel orange, 10YR 6/6, f	SM			ľ		X	.4/.4	14-24-26	
]	to c g sand, no odor, no clay.		-:- <u>-:</u> :-	<u> </u>	ļ			1		
					į					1
1					į			ļ		
35										
				•				1		
								l		
-								İ		1
] -										1
					1					1
40			ليبييا							

CLIE	MT MDC REALTY COMPANY	BOREHOLE	E NO.		B-2	CAM	P	RES	SSER	& MCK	EE INC
SITE	C-6 FACILTY, TORRANCE	TOTAL DEF	PTH	_	31.5 feet	E	LEV/	ATION		N. A.	
JOB N	NUMBER 2299-115-RT-AUDT	DATE DRIL	LLED	18	JULY 91	L	ogg	ED BY	/ <u></u>	MILY WEY	AND
DRILI	ING CONTR. BEYLIK DRILLING	DRILLING I	METH	IOD	HOLLC	W-STE	M A	UGER	· .		
_					RAPHIC LO)G	SAM	PLES	PID	BLOW	5500
DEPTH (feet)	DESCRIPTION		sosn	Lithology	Borehole Abandone	Water Level	Lab	Lith	(ppm) and R/hr	COUNT (per 6" interval)	RECOV / ADV. (feet)
-						كككك					
4						3					

SM

to SC

SM

SM

SM

to

SC

SM

SM

.9/.9

.4/.4

.4/.4

.4/.4

0/0

0/0

ONE COMPOSITE SAMPLE FOR ENTIRE BORING

NO GROUND WATER ENCOUNTERED

8-18-23

10-16-20

6-11-15

6-15-29

6-9-14

5-19-30

5-6.5' CLAYEY, SILTY SAND - mod brn, 5YR 3/4,

10-11.5' SILTY SAND - mod yel brn, 10YR 5/4, f to

20-21.5' CLAYEY, SILTY SAND - mod yel brn 10 YR

5/4, f g sand, moist, no odor, minor small pebbles.

25-26.5' SILTY SAND - mod yel brn, 10YR 5/4, f to

30-31.5' SILTY SAND - dk yel orange, 10YR 6/6, f

to c g sand, no odor, no clay, about 5% shell frags.

f to m g sand, moist, no odor.

m g sand, no odor, minor clay.

15-16.5' SILTY SAND - as at 10'.

m g sand, no odor, minor clay.

<u>10</u>

15

20

25

30

<u>35</u>

CAMP DRESSER & MCKEE INC. BOREHOLE NO. B-3 CLIENT MDC REALTY COMPANY **ELEVATION** N. A. TOTAL DEPTH 31.5 feet SITE C-6 FACILTY, TORRANCE DATE DRILLED 18 JULY 91 **EMILY WEYAND** LOGGED BY 2299-115-RT-AUDT JOB NUMBER HOLLOW-STEM AUGER DRILLING METHOD __ **BEYLIK DRILLING** DRILLING CONTR.

DHILL	ING CONTR. BETER STREETS	VIC II								
				RAPHIC LOC	3	SAM	PLES	PID	BLOW	חבכסע
DEPTH (feet)	DESCRIPTION	SOSA	Lithology	Borehole Abandoned	Water Level	Lab	Lith	(ppm) and R/hr	COUNT (per 6" interval)	RECOV. / ADV. (feet)
5	5-6.5' SILTY SAND - mod yel brn, 10YR 5/4, f to m g sand, moist, no odor, minor clay, tr fine gravel.	SM				5	X	0/0	5-10-21	
10 -	10-11.5' SILTY SAND - as at 5'.	SM	55; 55;		JUNTERED FOR ENTIRE BORING		X	0/0	6-11-22	
<u>15</u>	15-16.5' SILTY SAND - as at 5'.	SM	500 500 500 500 500 500 500 500 500 500	i)	ER ENCOUNTE	SAMPLE FOR E	X	0/0	4- 9- 17	
20	20-21.5' SILTY SAND - as at 5', but w/ 5% pebbles.	SM		GROUT	NO GROUND WATER ENCOUNTERED	COMPOSITE SAMPLE	X	0/0	8-24-30	
<u>25</u>	25-26.5' SILTY SAND - dk yel brn, 10YR 6/6, f to c , g sand, no odor.	SM	55		ON	ONE	X	0/0	11-15-22	
30	30-31.5' SILTY SAND -as at 25' but with 10-20% shell frags.	SM	#:#: #:#: #:#:				X	0/0	10-21-30	
35										
40		<u> </u>	<u> </u>	<u> </u>	1	Ц	1	<u></u>		<u> </u>

CLIENT MDC REA	ALTY COMPANY	BOREHOLE NO.	B-4	CAMP DRESS	ER & MCKEE IN	l
SITE C-6 FACILT	Y, TORRANCE	TOTAL DEPTH	31.5 feet	ELEVATION	N. A.	
JOB NUMBER	2299-115-RT-AUDT	DATE DRILLED	18 JULY 91	LOGGED BY	EMILY WEYAND	
DRILLING CONTR.	BEYLIK DRILLING	DRILLING METHO	DD HOLL	OW-STEM AUGER	- · · · · · · · · · · · · · · · · · · ·	

	LING CONTR.	,					····			
_				RAPHIC LOC	3	SAM	PLES		BLOW	BESOV
DEPTH (feet)	DESCRIPTION	ဗ္ဗ	Lithology	Borehole	<u>ہ</u> ۔	_		(ppm)	COUNT	RECOV. / ADV.
	DESCRIPTION	nscs	호	Abandoned	Water Level	Lab	를	and R/hr	(per 6"	(feet)
<u> </u>			15		<u>د</u> ۸			וווערו	interval)	`
_		ŀ								
-										
-										
5				1 555555						
_ ا	5-6.5' SILTY SAND - mod yel bm, 10YR 5/4, f to m		22					~~	0.40.40	
-	g sand, moist, no odor, trace clay, tr fine gravel.	SM						0/0	6-10-19	
-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~									
-						(5)				
		•				ž				ļ
10			<u> </u>	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		BORING				
_	10-11.5' SILTY SAND - as at 5'.	SM					X	0/0	5-8-15	
					۵	ENTIRE				
					핉	Ē		İ		
					巴	皿				
15					Z	FOR				
 -	15-16.5' SILTY SAND - as at 5', w/ up to 5% clay.	SM	555		GROUND WATER ENCOUNTERED	<u> </u>		0/0		}
-	10-10.5 OIL 1 OARD as at 0, 10 dp to 070 day.				2	SAMPLE			4-10-15	
-	•			55 15 555	~E	₹				
-					世					
				GROUT	\ <u>\</u>	COMPOSITE		1		
20		,	-:-:-	\\\ \\\\	5	S		- 1	7-18-23	
	20-21.5' SILTY SAND - mod yel brn, 10YR 5/4, f to	SM			\ <u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	$\overline{\mathbf{R}}$	\times	0/0	7-10-23	
	cg sand, no odor, some dk yel orange staining.				ರ	8 :				
					띪					
					9	ONE	ll			
25		•			z	0				
23	25-26.5' SILTY SAND - mod yel brn, 10YR 5/4, f to	SM	<i>5</i> ,5,4	XXXXX						
-	c g sand, no odor, no staining.	Olvi					\triangle	0/0	8-12-20	
-										ļ
-				\(\frac{1}{2}\frac{1}{	- 1					j
4					I					
30			27,24.0		1					İ
	30-31.5' SILTY SAND - as at 25' .	SM			- 1		\triangle	.4/.4	7-20-22	
					- 1					
					I					
35										-
					1					1
-										
-										
-					ļ					
4					- 1					1
40				I						

CLIENT MDC REALTY COMPANY

BOREHOLE NO. B-5

CAMP DRESSER & MCKEE INC.

SITE C-6 FACILTY, TORRANCE

TOTAL DEPTH

31.5 feet

ELEVATION

N. A.

DATE DRILLING METHOD

DRILLING METHOD

HOLLOW-STEM AUGER

DRIL	ING CONTR. BETLIN DRILLING DRILLING	AIC I I	IOD	HOLLOV						
			G	RAPHIC LOC	—	SAM	PLES	PID	BLOW	
DEPTH (feet)	DESCRIPTION	nscs	Lithology	Borehole Abandoned	Water Level	Lab	Lift	(ppm) and R/hr	COUNT (per 6" interval)	RECOV. / ADV. (feet)
5.	5-6.5' SILTY SAND - mod yel brn. 10YR 5/4, f to m	SM					X	0/0	13-18-25	
10	g sand, moist, no odor, up to 5% clay.	SM				BORING				
15	10-11.5' CLAYEY, SILTY SAND - dk yel brn, 10YR 4/2 of g sand, sl. moist, no odor, more clay than silt.	to SC			UNTERED	FOR ENTIRE B	X	0/0	7-10-20	
-	15-16.5' SILTY SAND - as at 5', w/ only trace day.	SM		GROUT	GROUND WATER ENCOUNTERED	SAMPLE	X	0/0	6-11-17	
<u>20</u> - -	20-21.5' SILTY SAND - mod yel brn, 10YR 5/4,1 to m g sand, no odor, no clay.	SM		5	NO GROUND V	ONE COMPOSITE	X	0/0	8-13-19	
<u>25</u> - - -	25-26.5' SILTY SAND - pale yel brn, 10YR 6/2, w/ dk yel orange Fe staining, 10YR 6/6, c to f g sand, no clay, no odor.						X	0/0	7-11-19	
<u>30</u> - -	30-31.5' SILTY SAND - as at 25', but moist.	SM					X	.4/.4	7-14-20	
35										
40										

CLIENT MDC REA	ALTY COMPANY	BOREHOLE NO.	B-6	CAMP DRESS	ER & MCKEE INC) .
SITE C-6 FACILT	Y, TORRANCE	TOTAL DEPTH	31.5 feet	ELEVATION	N. A.	
JOB NUMBER	2299-115-RT-AUDT	DATE DRILLED	18 JULY 91	LOGGED BY	EMILY WEYAND	
DRILLING CONTR.	BEYLIK DRILLING	_ DRILLING METHO	D HOLL	OW-STEM AUGER		

URIL	LING CONTR. BETEIN BRILLING DHILLING		.00	TIOLEGY						
			G	RAPHIC LOC	 }	SAM	PLES	PID	BLOW	[
DEPTH (feet)	DESCRIPTION	nscs	Lithology	I	Water Level		Ħ	(ppm) and R/hr	COUNT (per 6" interval)	RECOV. / ADV. (feet)
5 1 1	5-6.5' CLAYEY, SILTY SAND - mod yel bm, 10YR , 5/4, 1 g sand, moist, no odor, trace gravel.	SM to SC				NG	X	0/0	10-27-43	
10	10-11.5' CLAYEY, SILTY SAND -dk yel brn, 10YR 4/2, f g sand, no odor, trace gravel.	SM to SC			ERED	ENTIRE BORING	X	0/0	6-1 8-36	
15	15-16.5' CLAYEY, SILTY SAND - as at 10'.	SM to SC		NUT.	GROUND WATER ENCOUNTERED	SAMPLE FOR	X	0/0	5-14-18	
20	20-21.5' SILTY SAND - dk yel orange, 10YR 6/6, f to c g sand, no odor, minor clay.	SM		GROUT	GROUND WAT	E COMPOSITE	X	0/0	8-10-17	
<u>25</u>	25-26.5' SILTY SAND - as at 20'.	SM			ON	ONE	X	0/0	6-10-19	
30	30-31.5' CLAYEY, SILTY SAND - dk yel brn, 10YR , 4/2, w/ dk yel orange staining, 10YR 6/6, f g sand.	SM to SC					X	0/0	4 -6- 12	
35 - - - 40								·		

APPENDIX 2 LABORATORY DATA SHEETS

C K Y incorporated Analytical Laboratories

Date: 08/01/91

910758

CDM

18881 Von Karman, Suite #650

Irvine, CA 92715

Attn: Ms. Suzanne Rowe

Subject: Laboratory Report

Method

Project: McDonnell Douglas Torrance

Enclosed is the laboratory report for samples received on 07/25/91 and 7/19/91. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. The data reported includes:

EPA	6010/7000	5 Soi	l Composite
	8010/8020		l Composite
	8080	1 Soi	l Composite

No. of Analysis

The results are summarized on nine pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Dr. Kam Pang

Laboratory Director

EPA 3050/6010/7000 PRIOR. POLL METALS BY ICP/AA

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/24/91
SAMPLE ID: MDT-B1 DATE ANALYZED: 07/26/91

CONTROL NO: 910758-Comp. 1 MATRIX: Soil

PARAMETERS	RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
Antimony	ND	5.0
Arsenic	12	5.0
Beryllium	ND	0.50
Cadmium	2.9	0.50
Chromium - Total	23	0.50
Copper	23	0.50
Lead	ИD	1.0
Mercury	ND	0.05
Nickel	11	1.0
Selenium	ND	5.0
Silver	ND	0.50
Thallium	ND	10
Zinc	68	0.50

EPA 3050/6010/7000 PRIOR. POLL METALS BY ICP/AA

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/24/91
SAMPLE ID: MDT-B4 DATE ANALYZED: 07/26/91
CONTROL NO: 910758-Comp. 5 MATRIX: Soil

PARAMETERS	RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
Antimony	ND	5.0
Arsenic	15	5.0
Beryllium	ND	0.50
Cadmium	2.4	0.50
Chromium - Total	20	0.50
Copper	24	0.50
Lead	ND	1.0
Mercury	ND	0.05
Nickel	13	1.0
Selenium	ND	5.0
Silver	ND	0.50
Thallium	ND	10
Zinc	65	0.50

EPA METHOD 8010/8020

DATE REC'D: 07/19/91 CLIENT: CDM PROJECT: McDonneil Douglas DATE ANALYZED: 07/21/91 MATRIX TYPE: Soil BLANK MDT-81 MUT-63 MDT-84 MDT-B2 MDT-B6 SAMPLE ID: Comp. 1 CONTROL NO.: 910753 Camp. 2 Jurno 3 Comp. 4 Camp. 5 **DETEC** LIMIT -ARAMETERS (8010 RESULT lug/kg) (ug/r;ND ND ND ن, ٠ ND ND 26 Dichlorodifluorometriche ND ND ND ND Chioromethane ر . : ND 2ũ ND ND ND 1,0 ND 20 Vinyl Chloride ND ND ND ND ر.٠ ND ND 20 Sromomethane ND ND ND ٠, ١ Shioroethane 110 ND Inchlorofluoromethane ND ND ND NÜ ND : - Dichloroethene ND ND ND ND :.0 ND ND ND ND 1:() Methylene Chloride ND ND ND Trans-1,2-Dichtor Lethene ND 115 ND ND ND 1.1 - Dichloroethane МD ND ND ND ND ND 5 Chioroform ND :.0 ND 1,1,1-Trichloroethers ND ND ND ND 5 ND ND ND NO ND ND 5 Carbon Tetrachlorice ND ND ND 110 ND ND 5 1,2-Dichloroethane ND ND ND ٠,٥ frichloroethene ND ND ٠.٥ ND ΝD ND ND ND 5 1.2-Dichloropropers ND ND ND ٠.٥ ND ND Bromodichioromethane ND ND ND :40 ND 2-Chloroetnylvinyletner ND ND ND 1,0 Frans-1,3-Dichloropropene ND NO Cis-1,3-Dichtoroprisene ND ND ND ٠,٥ ND ND ND ND ND 1.1.2-Trichloroethore ٠, ن ND :iD ND ND Tetrachioroethene ND ∴ວ ND ND Dibromochioromethane ND ND ND 350 ND ND. Ethylene Dibromide ND ND ND MD ND ND ND ND ND 8.4 ND Chlorobenzene ND ND ND ND ND ND 5 Bromotorm ND ND ND ND 40 ND 1,1,2,2-Tetrachlorsethane ND ND ND ND ND ND ND Chlorotoluene ND ND M-Dichlorobenzene ND ND ND ND ND ND ND ::0 P-Dichlorobenzene ND ND ND ND ND ND ND ND 5 Benzylchloride O-Dichlorobenzene ND ND ND ND ND ND PARAMETER (8020) ND ΝŪ ND ::0 Benzene ND ND Ē ND ND ND ::0 ND ND Toluene ND ND ND ·;D ND Ethyl Benzene ND ND CN ND **'**,D ND Xyienes ND 116 106 110 . : 9 % Surrogate Recovery: 98 106

Gy

QUALITY CONTROL DATA

CLIENT:

CDM

PROJECT:

McDonnell Douglas

CONTROL NO:

910758

METHOD

EPA 8010/8020

MATRIX:

Soil

SAMPLE ID:

910758-B4

COMPOUND	SAMPLE <u>RESULTS</u> (ug/kg)	AMOUNT SPIKED (ug/kg)	% REC.	DUP. % REC.	RPD
11-DCE	ND	50	104	108	4
Benzene	ND	50	112	112	0
TCE	ND	50	124	126	2
Toluene	ND	50	114	116	2
Chl. Benzene	ND	50	126	128	2
============		=======	=======		

METHOD

EPA 3050/6010

MATRIX:

Soil

SAMPLE ID: 910758-Comp. 1

COMPOUND	SAMPLE <u>RESULTS</u> (mg/kg)	AMOUNT SPIKED (mg/kg)	% REC.	DUP. % REC.	RPD
Zinc	68	100	84	87	2
Chromium	23	100	82	81	0
Copper	23	100	84	83	0

EPA METHOD 8080 - PESTICIDES & PCBs

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/26/91
SAMPLE ID: MDT-B4 DATE ANALYZED: 07/29/91
CONTROL NO: 910758-Comp. 5 MATRIX: Soil

PARAMETERS (8080)	RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
Aldrin	ND	0.02
Alpha-BHC	ND	0.01
Beta-BHC	ND	0.02
Delta-BHC	ND	0.02
Gamma-BHC (Lindane)	ND	0.01
Chlordane	ND	.05
4,4'-DDD	ND	.02
4,4'-DDE	ND	.02
4,4'-DDT	ND	.02
Dieldrin	ND	.02
Endosulfan I	ND	.02
Endosulfan II	ND	.05
Endosulfan Sulfate	ND	.05
Endrin	ND	.02
Endrin Aldehyde	ND	.05
Heptachlor	ND	.02
Heptachlor Epoxide	ND	.02
Methxychlor	ND	.1
Toxaphene	ND	.1
Aroclor - 1016	ND	.1
Aroclor - 1221	ND	.1
Aroclor - 1232	ND	.1
Aroclor - 1242	ND	.1
Aroclor - 1248	ND	.1
Aroclor - 1254	ND	.1
Aroclor - 1260	ND	.1
	112	• •

% Recovery:

Dibutylchorendate	87
2,4,5,6-Tetrachloro-m-xylene	99

EPA METHOD 8080 - PESTICIDES & PCBs

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/26/91
SAMPLE ID: Method Blank DATE ANALYZED: 07/29/91
CONTROL NO: 910758 MATRIX: Soil

PARAMETERS (8080)	RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
Aldrin Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan I Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Toxaphene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.02 0.01 0.02 0.02 0.01 .05 .02 .02 .02 .02 .05 .05 .05 .05 .05
Aroclor - 1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND ND ND ND ND ND ND ND ND	.1 .1 .1 .1 .1

% Recovery:

Dibutylchorendate	87
2,4,5,6-Tetrachloro-m-xylene	99

LIST OF COMPOSITE

COMPOSITE	SAMPL	E ID C	KY CONTROL #
910758-Comp	1 MDT-B:	L-5 <i>'</i>	910758-1
	MDT-B	1-10'	910758-3
	MDT-B:	L-15'	910758-5
	MDT-B:	L-20 '	910758-7
	MDT-B3	L-25'	910758-9
	MDT-B3	1-30'	910758-11
910758-Comp	2 MDT-B2	2-5 <i>'</i>	910758-13
	MDT-B2	2-10'	910758-15
	MDT-B2	2-15'	910758-17
	MDT-B2	!-20 [?]	910758-19
	MDT-B2	2-25/	910758-21
	MDT-B2	:-30′	910758-23
910758-Comp 3			910758-25
	MDT-B3	-10 '	910758-27
	MDT-B3	-15 <i>'</i>	910758-29
	MDT-B3	-201	910758-31
	MDT-B3	-25 <i>'</i>	910758-33
	MDT-B3	-30'	910758-35
910758-Comp 6	MDT-B6	-5 /	910758-37
	MDT-B6	-10 ′	910758-39
	MDT-B6	-15 ′	910758-41
	MDT-B6	-20 [′]	910758-43
	MDT-B6	-25 [/]	910758-45
	MDT-B6	-30 ′	910758-47
910758-Comp 4	MDT-B4	- 5 ′	910758-49
	MDT-B4	-10 ′	910758-51
	MDT-B4	-15 ′	910758-53
	MDT-B4	-20 ′	910758-55
	MDT-B4		910758-57
	MDT-B4	-30 [′]	910758-59

Linseco-
A Corning Company

BOE-C6-0071991

LINSCCO A Corning Company	[] 9537	Skyway Dr., Felstar Ave	ton Green (1), June A. Vet	CA 934	55, (805)	922-27	76 00 (-1	•••	ノ -	Date	, ,	N C [] Pa ab Nun		RE()
CLIENT & DM				P			NAGER								
ADDRESS 1889 VOT	3881 VON KARMAN			_	S. Lowe ANALYSES										
					SAMPLE TYPE No. of Con. Sample Condition/										
PROJECT NAME	Mc Dorwell Douglas Tourie				7#	4 7	752	-57	152	. / 🔊		30/			
CONTRACT / PURCHASE ORDER / QU	CONTRACT / PURCHASE ORDER / QUOTE #			<u>-</u> s							19/x2	/ /	/ /	′ / ,	
					E	WE	ejei	Sb	/.	(q				/ /	
Sample No. /		Ţ.	Lab Sample	SA	MPLE TY	PE	No. of	7 /			20/	/ /		Same	ole Condition/
Identification	Date	Time	Number	LIQ.	AIR	SOLID	Con- tainers	/\	(5/6	0/00				, .	IEMARKS
MDT-B1-5'	7/18	754				X		C	C					13"5	S. Save
>MDT-BI-5.2'	/	4		ļ	<u></u>										
3 MDT - B1-10'	4-	805		ļ	ļ			<u> </u>	· C						
4 MDT -B1 - 102'		1			<u> </u>					ļ			<u> </u>		
MD1 - B1 - 15'		315		<u> </u>	ļ			<u>C</u>	‡C						
4 MDT - B1 - 15.21		1		 	ļ				<u>_</u>	-					
7 101-131-201	,	825		<u> </u>	ļ				1	 			ļļ.		
8/ MDT-B1-20,2	<u> </u>	0116		 	ļ				 						
9) MOT-BI-25'	, ,	845		 	<u> </u>				<i>\</i>	-		 	 		
10 MDT - BI-25.2 SAMPLERS: (Signature)	- 4	L U Re	ceived by: (Signa	ature)		Y	$oxed{V}$	_L	Date	Time					
G. Wegano			KEVIY	21010)					7/184	7:3~	 of custo 	dy form co	institutes :	authorization	e on this chain to perform the
Relinquished by: (Signature)		Re	eceived by: (Signa	ature)		\times		\times	Date	Time	- analyses Condition	s specified is, unless	above un	ider the Ens or purchase	eco Terms and order has been
Relinquished by: (Signature)		_	Date Time	Re	ceiyed		oratory b	<u>-</u> <u>-</u>	D	ate R	ECEIVED	Time	Date	ACCEPT	ED Time
Method of Shipment:	\preceq			L_	Ju	int	in		17,	119		<u>~</u>	<u> </u>		
method of Shipment.					•					1. Stora	DISPOSITIO ge time requ	ested:	(lavs	
Special Instructions: 69 1000	W1P	BTA	INT & PA	lea	so C	07m	Post	tr 6-	.5'	(Sample:	s will be sto	ored for 3 parges will	0 days w be billed	ithout additio	onal charges; shed rates.)
Intelval sumples from	eac	h Jo	07/NZ (5	>', 10	ر', رح	, 2	\ D', ≥ S	30')ta	(Enseco Disposal	will dispose will be by	of unreti	irned sam n whereve	er possible:	extra charge. otherwise, as
ENS-1145 FRON / COTTON FOR COUNTY	Save	OHU	ur 6 (5.	<u>2', 10</u>	3.Z'	تكلم	2', 20.	2',2 5	5.243		ate, accordin	g to legal	requireme	ents.)	

i .

PROJECT N	IAME MCDO	mell man	Virgli	✓ PRO					S- RT	AUD	Field Lo Referen	g Book ce No
	E NUMBER	DATE	TIME	SAMPLE LOCATION	SAMPLE TYPE	ANALYS (80)	SES /			NUMBER OF CONTAINE	ВООК	REMAR
LM DT	31 30'_	7118	900	BI	Soil		C	c		1	1	3"554
	36 2 52 5'		4							i		1
LMPT LE	525	<u> </u>	1040.	BZ				2				
h	f 5.2		1 1									
H-+		· 	1050		1-1			C				
 -			1- (5		 							
<u>├</u>	<u> </u>		1055					C		ll_		
├─ <i>┼</i> ·─-┤}─-┤		4	1107				<u> </u>			 -		
		1 -	1107		 		C	C		<u> </u>		
-	25		1125		 					├		ļ
			11 42		 		C	4		 		
	30		1140		 	++-				 		
	/ II 30.				 - 			$\exists \vdash$		\		
MDIB	3 5		1325	B3	1-1-1			d				ļ
L-L	5.7		V				M	7			-	
	10	~	1337				C	$\overline{}$	_			}
SAMPLED BY (SIG	200	/ -			·						-L	
OVIALLED BY (21)	3N)	Deep	. n									
NOTE: DE	640 G1	0000	115 -	15015		/	T		·			
RELINQUISHED B	Y (SIGN) REI	INQUISHED	BY (SIGKI)	LILE CHIONS OF	1 D. 1	314	到近	Jaly	MES			
1) Grand Wes	all a			I LEELINGUIGHED	BY (SIGN)	HEL	INQUIS	HED B	Y (SIGN)	/		ED BY (SIGN
DATE/WHE (7/8	3 17525 D	ATE/TIME (/ 	DATE/TIME (_ 4)X	\sim
RECEIVED BY (SIC		EIVED BY (S	SIGN)	RECEIVED BY (S	IGNI)		DATE/TIM		/		DATE/TIME (
1 KEVIT	(2)	\times	\checkmark		× -	I	ZEIVED	BY (SI	iN) Λ		ECEIVED B	Y (SIGN)
DATE/TIME (7//8	7.4	ATE/TIME (1) DATE/TIME (_ (0)	DATE/TIM	E I	X_	@		\sim
· · · · · · · · · · · · · · · · · · ·	MENT							- '			DATE/TÍME (/

-110 158

410150 CHAIN OF CUSTODY RECORD Camp Dresser & McKee Inc. PROJECT NAME Mc DOWNELL Ducks PROJECT NUMBER 2299-115-127 Field Log Book Reference No.____ AUDT ANALYSES NUMBER SAMPLE LOG SAMPLE NUMBER DATE TIME SAMPLE LOCATION OF BOOK REMARKS **TYPE** CONTAINERS PG. NO. 1337 B3 SOIL 2.5 x3' 55 Slever 1345 15 15.2 20 1352 20.7 14 00 25.7 37 garden 30 30.7 66 100 11045 10 C 10.2 15 1650 20 100 C \subset 20.Z SAMPLED BY (SIGN) RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) EGEND: 1) Long Wyon 7 DATE/THME (7/18 / 7:35) RELINQUISHED BY (SIGN) DATE/TIME (DATE/TIME (DATE/TIME (DATE/TIME (RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) 1 KEVILY DATE/TIME (7/18 /3:35) DATE/TIME (DATE/TIME (DATE/TIME (DATE/TIME (METHOD OF SHIPMENT SHIPPED BY (SIGN) RECEIVED FOR LABORATORY BY (SIGN) DATE/TIME Frieta

CHAIN OF CUSTODY RECORD Camp Dresser & McKee Inc. PROJECT NAME Mc DOWNELL Daug las Field Log Book PROJECT NUMBER 2279 - 115-RT Reference No.___ **ANALYSES** NUMBER LOG SAMPLE SAMPLE NUMBER DATE TIME SAMPLE LOCATION воок **REMARKS** TYPE CONTAINERS PG NO BB SOIL 2.5x3"SS Sleve CCC 10 1821 dc10.2 150 830 CC 15.2 20.7 CCC SAMPLED BY (SIGN) EGEND: RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) RELINQUISHED BY (SIGN) 1) Auto J. Decarb DATE/TIME 1 7/8 / 7:35 DATE/TIME (DATE/TIME (DATE/TIME (RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) RECEIVED BY (SIGN) KEVIN DATE/TIME (7/18 / 7:35) DATE/TIME (DATE/TIME (DATE/TIME (METHOD OF SHIPMENT SHIPPED BY (SIGN) RECEIVED FOR LABORATORY BY (SIGN) DATE/TIME

970 730

C K Y incorporated Analytical Laboratories

Date: 08/01/91

910759

CDM

18881 Von Karman, Ste. 650

Irvine CA 92715

Attn: Ms. Suzanne Rowe

Subject: Laboratory Report

Project: McDonnel Douglas-Torrance

Enclosed is the laboratory report for samples received on 07/19/91. The samples were received in coolers with ice and intact; the chain-of-custody forms were properly filled out. The data reported includes:

<u>Method</u>	NO. OI ANALYSIS
EPA 8010/8020	1 Soil Composite
EPA 8080	1 Soil Composite
EPA 6010	1 Soil Composite

The results are summarized on six pages.

Please feel free to call if you have any questions concerning these results.

Sincerely,

Dr. Kam Pang

Laboratory Director

EPA METHODS - 8010/8020

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: N/A
SAMPLE ID: MDT-B5-5',10',15',20',25',30'DATE ANALYZED: 07/22/91
CONTROL NO:910759-1,3,5,7,9,11 MATRIX TYPE: Soil

PARAMETERS (8010)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Dichlorodifluoromethane	ND	20
Chloromethane	ND	20
Vinyl Chloride	ND	20
Bromomethane -	ND	20
Chloroethane	ND	20
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
Methylene Chloride	ND	5
Trans-1,2-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
Chloroform	ND	5
1,1,1-Trichloroethane	ND	5
Carbon Tetrachloride	ND	5
1,2-Dichloroethane	ND	5
Trichloroethene	ND	5
1,2-Dichloropropane	ND	5
Bromodichloromethane	ND	5
2-Chloroethylvinylether	ND	5
Trans-1,3-Dichloropropene	ND	5
Cis-1,3-Dichloropropene	ND	5
1,1,2-Trichloroethane	ND	5 5
Tetrachloroethene	ND	5 5
1,1,1,2-Tetrachloroethane	ND	
Dibromochloromethane	ND	5
Ethylene Dibromide	ND	5
Chlorobenzene	ND	5
Bromoform	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Chlorotoluene	ND	5
M-Dichlorobenzene	ND	5
P-Dichlorobenzene	ND	5
Benzylchloride	ND	5
O-Dichlorobenzene	ND	5
PARAMETERS (8020)		
Benzene	ND	5
Toluene	ND	5 5
Ethylbenzene	ND	5
Xylenes	ND	5
% Surrogate Recovery:	110	

EPA METHODS - 8010/8020

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: N/A
SAMPLE ID: Method Blank DATE ANALYZED: 07/22/91
CONTROL NO: 910759 MATRIX TYPE: Soil

PARAMETERS (8010)	RESULTS (ug/kg)	DETECTION LIMIT (ug/kg)
Dichlorodifluoromethane	ND	20
Chloromethane	ND	20
Vinyl Chloride	ND	20
Bromomethane -	ND	20
Chloroethane	ND	20
Trichlorofluoromethane	ND	5
1,1-Dichloroethene	ND	5
Methylene Chloride	ND	5
Trans-1,2-Dichloroethene	ND	5
1,1-Dichloroethane	ND	5
Chloroform	ND	5
1,1,1-Trichloroethane	ND	5 5
Carbon Tetrachloride	ND	5 5
1,2-Dichloroethane	ND	5 5
Trichloroethene	ND ND	5
1,2-Dichloropropane	ND	5
Bromodichloromethane	ND	5
2-Chloroethylvinylether	ND	5
Trans-1,3-Dichloropropene	ND	5
Cis-1,3-Dichloropropene	ND	5
1,1,2-Trichloroethane Tetrachloroethene	ND	5
1,1,1,2-Tetrachloroethane	ND	5
Dibromochloromethane	ND	5
Ethylene Dibromide	ND	5
Chlorobenzene	ND	5
Bromoform	ND	5
1,1,2,2-Tetrachloroethane	ND	5
Chlorotoluene	ND	5
M-Dichlorobenzene	ND	5
P-Dichlorobenzene	ND	5
Benzylchloride	ND	5
O-Dichlorobenzene	ND	5
PARAMETERS (8020)		
Benzene	ND	5
Toluene	ND	5
Ethylbenzene	ND	5
Xylenes	ND	5
% Surrogate Recovery:	116	

EPA METHOD 8080 - PESTICIDES & PCBs

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/26/91
SAMPLE ID: MDT-B5-5',10',15',20',25',30'DATE ANALYZED: 07/29/91
CONTROL NO:910759-1,3,5,7,9,11 MATRIX: Soil

PARAMETERS (8080)	RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
Aldrin Alpha-BHC Beta-BHC Delta-BHC Camma-BHC (Lindane) Chlordane 4,4'-DDD 4,4'-DDE 4,4'-DDT Dieldrin Endosulfan II Endosulfan II Endosulfan Sulfate Endrin Endrin Aldehyde Heptachlor Heptachlor Toxaphene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.02 0.01 0.02 0.02 0.01 .05 .02 .02 .02 .02 .05 .05 .05 .02
Aroclor - 1016 Aroclor - 1221 Aroclor - 1232 Aroclor - 1242 Aroclor - 1248 Aroclor - 1254 Aroclor - 1260	ND ND ND ND ND ND	.1 .1 .1 .1 .1

% Recovery:

Dibutylchorendate 98 2,4,5,6-Tetrachloro-m-xylene 115

EPA METHOD 8080 - PESTICIDES & PCBs

				05 (00 (03
CLIENT:	CDM	DATE	REC'D:	07/19/91
PROJECT:	McDonnel Douglas	DATE	EXTRACTED:	07/26/91
			ANALYZED:	
	reciiou bium	MATR		Soil
CONTROL NO:	910/59	1111111		

RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.02 0.01 0.02 0.02 0.01 .05 .02 .02 .02 .02 .05 .05 .05
ND ND ND ND ND ND ND	.1 .1 .1 .1 .1
	MD ND ND ND ND ND ND ND ND ND ND ND ND ND

% Recovery:

Dibutylchorendate	87
2.4.5.6-Tetrachloro-m-xylene	99

EPA 3050/6010/7000 CAM METALS BY ICP/AAS

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/24/91
SAMPLE ID: MDT-B5-5',10',15',20',25',30'DATE ANALYZED: 07/26/91
CONTROL NO:910759-1,3,5,7,9,11 MATRIX: Soil

PARAMETERS	RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
Antimony	ND	5.0 5.0
Arsenic Beryllium	ND ND	0.50
Cadmium	1.6	0.50 0.50
Chromium - Total	13 11	0.50
Copper Lead	ND	1.0
Mercury	ND 9.4	0.002 1.0
Nickel Selenium	ND	5.0
Silver	ND	0.50 10
Thallium Zinc	ND 40	0.50

QUALITY CONTROL DATA

CLIENT:

CDM

PROJECT:

McDonnel Douglas

CONTROL NO:

910759

METHOD

EPA 3050/6010

MATRIX:

Soil

SAMPLE ID:

910758-Comp. 1

COMPOUND	SAMPLE <u>RESULTS</u> (mg/kg)	AMOUNT <u>SPIKED</u> (mg/kg)	% REC.	DUP. <u>% REC.</u>	RPD	
Zinc	68	100	84	87	2	
Chromium	23	100	82	81	0	
Copper	23	100	84	83	0	

METHOD

EPA 8010/8020

MATRIX:

Soil

SAMPLE ID:

910758-Comp. 5

COMPOUND	SAMPLE <u>RESULTS</u> (ug/kg)	AMOUNT <u>SPIKED</u> (ug/kg)	% REC.	DUP. % REC.	RPD	
1,1 DCE Benzene TCE Toluene Chl. Benzene	ND ND ND ND ND	50 50 50 50 50	104 112 124 114 126	108 112 126 116 128	4 0 2 2 2	

 A_{l}

-11-7,7

CLIENT A					CHAI	N OF C	UST	COD	Y REC	OR	RD			•										
TANAME 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1																								
ADDRESS: 18881	VON KARI	MAN	, 5	Œ (650	DATE:	7/19	191					5	į	L		7 _	_		iytica Maple		orato	ries	
1 EVINE	, CA 927	15	<u> </u>		_ \	PAGE	OF_	<u>' </u>					7	Ĕ		17	V			ance, (213-6			1	
PHONE NO. 714 757	-54 57 FAX NO.	714 -	757	<u>Z -</u>	1307	,		•					Ť.	2		-	I			213-6				
PROJECT NAME: MC	Analytical Laboratories ADDRESS: 1888 UON KARMAN STE 650 DATE: 7/1991 PAGE OF PAGE OF TOTALE PROJECT NAME: M. DOWNHELL DOUGLOS - TOTALE SEND REPORT TO: SUZCIONE LOUDE TOTALE Analytical Laboratories 630 Maple Ave. Torrance, Calif. 90503 Tel: 213-618-8889 Fax: 213-618-0818																							
SEND REPORT TO:	20 NA	عصو		 -	· -	TUDA	AROU	ND TI	ME			<u>. Y</u>		8	AN	IAI V	CEC.	DEO	UIRE					
SAMPLER NAME/SIGNATUR	RE						I ANOU RMAL		,			_ §	6	٣	AIN	ALT	SES .	1	UINE					
1. 1. 1	120					RUS		2	8 <			ふ	7	- 80 -	4	ß	itals	29	ξ.v.	•				
SAMPLE ()	Weep					<u>_</u>			<u> </u>	-	15	8010/601	8020/602	-809/0808 -	8240/624) (62	CAM Metals	ē	+ + + + + + + + + + + + + + + + + + +					
NUMBER	SAMPLI NG Date/Time		PRES		CONTAINE SIZE/TYPE	1		SOIL	PTION OTHER	418.1	M8015	8	802	8	824	8270/625	₹	25	30=2	:				
MDT-B5-5	7/19	910			.5×3*46			\	<u> </u>			7	C	2	П			C		ΪT		$\neg \tau$	$\overline{}$	
MDT . 85 - 5,2		1	197	·	12/2/22	KIRIK	_	- 			\vdash	\preceq	\dashv	-	-			_	╁	-	\vdash	一	-	
		4	-	┯┼	-		-	+-		-			$\frac{1}{2}$	$\overline{}$	-			_			\vdash		\longrightarrow	
MDT-B5-10		915		\dashv				-{					C	의			<u> </u>	C	-			\dashv		
MOT-B5-10.2		14		_				1_						_					<u> </u>					
MOT-BS-15		925										C	C	<u></u>				2						
MDT-85-15.2		1			l l	ĺ																		
MDT-B5-20		930										7	c	2				C					\neg	
MDT-B5-20.2		11/						T														\neg		
UDT-85-25		935	-									C	c	ے				C				一		
MDT-85-25.2	·			T										_					1					
MOT. 185-30		945	-1						· · · · · · · · · · · · · · · · · · ·			C	0	2										
MITT- B5 30.7	J	V	J	,				1														\neg		
			7	\Box				The)				\neg						 			-		
		+		寸			- -	4		 			$\neg \dagger$		-			-	 			\dashv		
COMMENTS: Place and and Still Dady, Date 12 12 12 12 12 12 12 12 12 12 12 12 12																								
COMMENTS: Please composite all 5' INTERVALS for I composite sample for the analyses																								
Relinguished by Signature	Daye;	Receiv	ed by:	(Sign	iature)	Date:	Re	lingui	shed by: (S	ignati	ure)	Dat							ignati			Dat		
Company:	Date: Plane:	1 2/2·	~			7/19			•						ļ						\bot			
			any: Kソ			Time:		ompan	y:			Tim	16:		Co	ompa	any:					Tim	ie:	
CDM	10:0		<u>ハソ</u>			10:30									<u></u>									

EPA 3050/6010/7000 PRIOR. POLL METALS BY ICP/AA

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/24/91
SAMPLE ID: MDT-B2 DATE ANALYZED: 07/26/91
CONTROL NO: 910758-Comp. 2 MATRIX: Soil

RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
ND	5.0
11	5.0
ND	0.50
2.2	0.50
18	0.50
18	0.50
ND	1.0
ND	0.05
12	1.0
ND	5.0
ND	0.50
ND	10
59	0.50
	(mg/kg) ND 11 ND 2.2 18 18 ND ND ND ND ND ND ND ND ND N

EPA 3050/6010/7000 PRIOR. POLL METALS BY ICP/AA

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/24/91
SAMPLE ID: MDT-B3 DATE ANALYZED: 07/26/91
CONTROL NO: 910758-Comp. 3 MATRIX: Soil

	DETECTION LIMIT (mg/kg)
ND	5.0
13	5.0
ND	0.50
2.4	0.50
19	0.50
19	0.50
ND	1.0
ND	0.05
10	1.0
ND	5.0
ND	0.50
ND	10
62	0.50
	13 ND 2.4 19 19 ND ND ND ND ND ND ND ND ND ND ND ND ND

EPA 3050/6010/7000 PRIOR. POLL METALS BY ICP/AA

CLIENT: CDM DATE REC'D: 07/19/91
PROJECT: McDonnel Douglas DATE EXTRACTED: 07/24/91
SAMPLE ID: MDT-B6 DATE ANALYZED: 07/26/91

CONTROL NO: 910758-Comp. 4 MATRIX: Soil

PARAMETERS	RESULTS (mg/kg)	DETECTION LIMIT (mg/kg)
Antimony	ИD	5.0
Arsenic	7.8	5.0
Beryllium	ND	0.50
Cadmium	1.9	0.50
Chromium - Total	14	0.50
Copper	11	0.50
Lead	ND	1.0
Mercury	ND	0.05
Nickel	8.5	1.0
Selenium	ND	5.0
Silver	ND	0.50
Thallium	ND	10
Zinc	44	0.50